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Abstract
This paper explores the applicability of x-ray diffraction measurements of stress
to high pressure deformation experiments. We model measurements of elastic
lattice strains in various geometries for both axial and rotational deformation
apparatus. We then show that, for most cases, stresses can be inverted from the
diffraction data. A comparison between the results of our models and actual
experimental data also indicates that plastic deformation can have an influence
that is not addressed properly in the elastic models of lattice strains and should
therefore be treated with caution.

1. Introduction

The importance of rheological properties for understanding the dynamics and evolution of the
deep Earth is well recognized. However, while considerable progress has been achieved in
establishing phase diagrams and physical properties of minerals at high pressure and high
temperature, very little is known about the rheological properties of these phases under
relevant conditions. To address this issue, deformation experiments at high pressure and high
temperature are presently being developed [1–5]. In those experiments, a sample is deformed
under high pressure while stress and lattice preferred orientation (LPO) are monitored in situ
using x-ray diffraction.

While stress evaluation using diffraction has been used for decades in the material science
community [6–8], its application in high pressure research is recent and has not been fully
explored. In particular, models used for the interpretation of diffraction data in high pressure
deformation experiments [9] rely on the assumption that (i) the sample is submitted to a stress
that is predominantly axial, (ii) no LPO is present in the sample, (iii) plasticity does not affect
the measured lattice spacings. Under those conditions, stress can be evaluated in radial or axial
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Figure 1. Coordinate systems used in the analysis. The sample coordinate system KS is defined by
the sample environment, with ZS parallel to the deformation direction. The laboratory coordinate
system KL is defined with ZL parallel to the bisector between the incoming and diffracted beams and
XL in the plane containing the incoming and diffracted beams, pointing towards the detector. The
crystallite coordinate system KC is defined according to the crystallographic structure. Microscopic
physical relations, such as Hooke’s law relating the microscopic stresses, strains and single-crystal
elastic moduli, should be applied in each crystallite coordinate system KC. Macroscopic properties
such as polycrystalline texture or macroscopic stress are expressed in the sample coordinate system
KS.

diffraction geometry, assuming that the single-crystal elastic moduli of the sample have been
estimated independently. However, these assumptions have raised controversies and results
obtained using this technique are not always accepted in the community [10].

In this paper, we address this issue by simulating lattice strain measurements in
high pressure deformation experiments using more advanced models that do not make the
assumption of pure axial stress and include effects of LPO [11]. Comparison between the
results of these models and experimental data can be used to assess the state of stress in the
experiment. Those models can also be used to test our ability to invert experimental data
from experiments in various geometry. Finally, the last section of the paper presents actual
experimental data in order to assess the compatibility between the elastic lattice strain models
and actual measurements.

2. Elastic theory of diffraction of a polycrystal under stress

Theories relating measured d-spacings using x-ray diffraction, elastic moduli, stress,
and lattice preferred orientations (LPO) have been developed independently by several
groups [6, 8, 11–19]. Most models used in high pressure research assume axial symmetry
of stress and neglect the effects of LPO [13–18]. However, models for more general stress
environments and which include the effects of LPO have already been developed and applied
to high pressure diffraction data [11, 20–22]. Therefore, we will only summarize the main
features of the theory. Details can be found in [11, 21].

First, the resolution of the problem is greatly simplified by introducing several coordinate
systems (figure 1): the crystallite coordinate system KC, the sample coordinate system KS, and
the laboratory coordinate system KL. The crystallite coordinate system KC is defined according
to the crystallographic structure. Microscopic physical relations, such as Hooke’s law relating
the microscopic stresses, strains and single-crystal elastic moduli, should be applied in each
crystallite coordinate system KC. The sample coordinate system KS is defined by the sample
environment, with ZS parallel to the deformation direction. Finally, the laboratory coordinate
system KL is defined with ZL parallel to the bisector between the incoming and diffracted
beams and XL in the plane containing the incoming and diffracted beams, pointing towards the
detector.
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Samples submitted to plastic deformation can develop LPO [23]. In a polycrystal, LPO
can be represented in terms of an orientation distribution function (ODF) that can be extracted
from high pressure diffraction data [1, 4, 24–26]. This is a probability function for finding an
orientation and is normalized such that the integral over the whole orientation space is unity.
For each orientation g, the ODF f (g) describes the probability density of finding a crystallite
that has the orientation g within dg.

Supposing that approximately the same conditions exist for all grains with the same
orientation g, with no incompatibilities at grain boundaries or within the grains themselves,
and that we consider an ensemble with a sufficiently large number of grains to be represented
statistically by an ODF, ODF-weighted averages can be performed to calculate the polycrystal’s
macroscopic properties from microscopic quantities. For instance, the macroscopic stress σ and
strain ε applied to the polycrystal are

ε = ε(g)
a =

∫
G

ε(g) f (g) dg (1)

σ = σ(g)
a =

∫
G

σ(g) f (g) dg, (2)

where the superscript a denotes an arithmetic mean over all possible orientations. Under
the iso-stress Reuss approximation, the elastic properties of the polycrystal can be calculated
directly from the average of the elastic compliances using

S
Reuss = S(g)

a
∫

G
S(g) f (g) dg. (3)

Details of the calculation of polycrystal average elastic properties, including effects of LPO,
for the Voigt and geometric mean have also been derived [11].

In a diffraction experiment, the position of a peak is directly related to the actual d-spacing
of the diffracting plane by the relation

λ = 2 d sin θ, (4)

where λ is the x-ray wavelength, d is the lattice plane spacing, and θ is the diffraction angle. For
a polycrystal, a diffraction peak is the sum of the contribution of all crystallites in the correct
reflection position, that is, with the scattering vector y parallel to the normal to the diffracting
plane hi (figure 2). Therefore, the measured d-spacing dm(y) is the ODF-weighted arithmetic
mean:

dm(y) = 1

4π P(y)

∫
G y

d(g) f (g) dg, (5)

where G y denotes the subset of crystallites in the diffraction condition and P(y) is the
normalized number of crystallites in the reflection position.

It is useful to separate the contribution of the hydrostatic pressure, σ P , and the deviatoric
stress σ , using

d = d0(σ P ) + d0

(
d − d0

d0

)
(σ P , σ ) = d0 (1 + ε) (6)

as the contribution of σ P can be estimated easily using a known equation of state and simple
crystallographic relations. The measured d-spacings d depend on the hydrostatic pressure
σ P , the deviatoric stress σ , the single-crystal elastic moduli S, the ODF f , the plane under
consideration hi , and the direction of observation y. They are related to an ‘experimental’
strain

ε(σ , S, f, hi , y) = d(σ P , σ , S, f, hi , y) − d0(σ P , hi )

d0(σ P , hi )
. (7)
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Figure 2. Experimental setup for opposed anvils experiments. The sample is confined between
two opposed anvils. In a radial diffraction geometry, a monochromatic x-ray beam is sent with
the direction of the incoming beam perpendicular to the anvil axis and the data is collected on an
area detector orthogonal to the incoming beam. The position and intensity of the diffraction lines
are analysed as a function of the azimuthal angle δ. Directions in the sample coordinate system
KS(XS, YS, ZS) can be expressed as a function of the two Euler angles α and β, where β and α

are related to a rotation around YS and ZS, respectively. For a given diffraction peak, the normal
to the diffracting plane hi is aligned with the scattering vector y. Note that the azimuth angle δ is
measured in an anti-clockwise direction.

In the laboratory coordinate system KL (figure 1), the measured strain is equal to the ε33

component of the strain tensor, and

εL
33(σ , S, f, hi , y) = 1

4π P(y)

∫
Gy

εL
33(σ , S, hi , y) f (g) dg. (8)

Applying Hooke’s law to the polycrystal in the laboratory coordinate system, we also have

εL
33(σ , S, f, hi , y) = SL

33kl(S, f, hi , y) σ L
kl , (9)

where the laboratory elastic compliances SL
33kl are arithmetic means that only consider the

subset of grains that actually contribute to the diffraction.
Finally, the transformation of the stress tensor σ L

kl to the sample coordinate system, with
the appropriate rotation operator σ L = gL←S(y) σ S , provides

εL
33(σ , S, f, hi , y) = SL

33kl (S, f, hi , y)gL←S
klmn (y) σ S

mn (10)

= SL S
33mn(S, f, hi , y)σ S

mn, (11)

where σ S
mn is the macroscopic deviatoric stress tensor, expressed in the sample coordinate

system KS.
Calculation of the mixed sample–laboratory coordinate system’s macroscopic elastic

moduli SL S
33mn(S, f, hi , y) from the single-crystal elastic moduli S, the ODF f , lattice planes

considered hi and the direction of orientation y is not straightforward. In the general case,
no analytical relation can be extracted, and all calculations should be performed numerically.
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This procedure has been described in detail for the Reuss, Voigt, and geometric (BPGeo)
averages [11, 27]. It should be noted that, for the general case of a textured polycrystal, the
definition of the Hill average is ambiguous and therefore cannot be used [11]. On the other
hand, this procedure does not make any assumption for the geometry of stress and can be
applied to the most general cases.

If the assumptions behind the model presented here are verified (approximately the same
conditions exist for all grains with the same orientation g, with no incompatibilities at grain
boundaries or within the grains themselves, and with an ensemble with a sufficiently large
number of grains to be represented statistically by an ODF), and if the single-crystal elastic
moduli are known, these equation can be used to simulate the effect of stress on diffraction
measurement or to invert residual stresses from diffraction data, including the effects of LPO.
If the stress applied to the sample is known, they could also be used to invert effective single-
crystal elastic moduli.

3. Models of experimental data

3.1. Main features

In this section, we will model the effect of stress on x-ray diffraction measurements on a
polycrystal, with a particular application to the geometries used in high pressure deformation
experiments. The results presented here are purely numerical and no attempt will be made to
obtain mathematical proofs of inversions capabilities. They should be considered as a catalogue
of the effects of stress on measured diffraction patterns with an exploration of our ability to
invert stress from experimental data.

For these models, we assume that the sample is a polycrystal of pure hexagonal-close-
packed (hcp) Co. In an attempt to improve our understanding of the behaviour of materials
under pressure, Co has been studied extensively. Under ambient conditions, it exhibits either
the hcp or the metastable face-centred-cubic (fcc) crystal structure and transforms into the fcc
structure at 695 K; at high pressure, it transforms into the fcc structure in the range 105–
150 GPa [28]. Its elastic properties have been calculated [29], measured using inelastic x-ray
scattering (IXS) [30, 31], and deduced from Raman spectroscopy [32] up to high pressure. It
has also been studied extensively using radial x-ray diffraction [21, 22]. Therefore, this material
is an ideal candidate for testing stress and strain analysis.

In all cases, the sample is assumed to be submitted to an average pressure of 42 GPa.
The calculation of unit cell parameters is based on previous measurements of the equation of
state [33] and we used the single-crystal elastic moduli and their pressure dependence measured
by inelastic x-ray scattering [30]. We also assume that the models developed in section 2 apply,
i.e. that the same conditions exist for all grains with the same orientation.

In the forward modelling, the unit cell parameters of the polycrystal are calculated at a
pressure 42 GPa using the equation of state. We then calculate the lattice strains resulting
from deviatoric stresses using the theory described in section 2 and simulate x-ray diffraction
measurements assuming a monochromatic beam of wavelength 0.4 Å. The synthetic data is
then processed for stress inversion by fitting deviatoric stress tensor components and d-spacings
under equivalent hydrostatic pressure d0(σ P , hkl). Cell parameters a and c are deduced from
the fitted d0(σ P , hkl) and later used to invert the hydrostatic pressure.

3.2. Opposed anvil geometry

The developments presented in this section can be applied to various opposed anvil
deformation experiments, such as those performed in the D-DIA [3, 5, 10, 34–38], Drickamer
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Table 1. Applied stress, inversion parameters, and success in stress inversion for models of the
opposed anvils geometry. Stresses are expressed in GPa in the sample coordinate system KS

(figure 2).

Model Geometry Applied stress Inversion model Success

1 ⊥
[−1.5 · ·

· −1.5 ·
· · 3.0

] [−t/3 σ12 σ13

· −t/3 σ23

· · 2t/3

]
Yes

2 ⊥
[−2.5 · ·

· −0.5 ·
· · 3.0

] [
σ11 σ12 σ13

· σ22 σ23

· · σ33

]
No

3 ⊥
[−0.5 · ·

· −2.5 ·
· · 3.0

] [
σ11 σ12 σ13

· σ22 σ23

· · σ33

]
No

4 ⊥
[ · 3 ·

3 · ·
· · ·

] [−t/3 σ12 σ13

· −t/3 σ23

· · 2t/3

]
Yes

5 ⊥
[ · · 3

· · ·
3 · ·

] [−t/3 σ12 σ13
· −t/3 σ23

· · 2t/3

]
Yes

6 ⊥
[ · · ·

· · 3
· 3 ·

] [−t/3 σ12 σ13

· −t/3 σ23
· · 2t/3

]
Yes

7 ⊥ g(0, 10◦, 30◦)
[−1.5 · ·

· −1.5 ·
· · 3.0

]
g(0, β, α)

[−t/3 · ·
· −t/3 ·
· · 2t/3

]
Yes

presses [16, 39] or the diamond anvil cell (DAC) [4, 9, 40–47]. Figure 2 presents a typical setup
of an experiment in the DAC. In those experiments, a sample is compressed between two anvils
and diffraction is performed with the incoming x-ray beam perpendicular to the direction of
compression. There are various ways of collecting diffraction patterns, such as using energy-
dispersive detectors at several locations [36, 39, 41, 42, 48] or an image area detector [4, 37, 38].
In the present paper, we assume that the measurements are performed on an area detector, but
those results can be easily converted to the case of measurement in energy dispersive geometry.

The stress applied to the sample has a strong axial component and most studies conducted
in this geometry have assumed that the stress is purely axial, with a cylindrical symmetry
around the axis of the anvils. Following those assumptions, models have been developed that
relate the measured lattice strains with stress, single-crystal elastic moduli, and lattice preferred
orientation [11, 14–18]. However, the validity of the cylindrical symmetry of stress has been
questioned. Therefore, in this section, we will model measurements of d-spacings in radial
diffraction geometry for various stress configurations. These models are then used to assess
our ability to invert stress from the diffraction data.

Stress models that we considered are listed in table 1. Figure 3 presents the simulated
lattice strains εL

33 = (d − d0)/d0 for the 100 line of cobalt as a function of the azimuth angle
on the detector δ and (1 − 3 cos2 βy), where βy is the angle between the axis of the anvil and
the diffracting plane normal. Stress models include (i) models with a pure axial stress and a
symmetry axis parallel to the direction of the anvils, (ii) models with triaxial stresses having
the principal components of stress aligned with the axis of the sample coordinate system KS,
(iii) models with non-zero shear components of the stress tensor, and (iv) models with a pure
axial stress with the symmetry axis tilted from the direction of the anvils [47].

The solid lines in figures 3(a) and (b) indicate the results that we obtain if a pure axial
stress is applied to the sample (model 1 in table 1) without effects of LPO (thick solid line)
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Figure 3. Simulation of measured lattice strains for the 100 line of a cobalt sample in an opposed
anvil experiment as a function of the azimuth angle on the detector δ (a), (c), (e) and (1−3 cos2 βy )

(b), (d), (f), where βy is the angle between the anvil axis and the diffracting plane normal, for
various stress configurations. Figures (a) and (b) present results for cases where the principal stress
directions are aligned with the sample coordinate system (figure 1) with a pure axial stress and no
effect of texture (thick solid line), pure axial stress including effects of texture (thin solid line), and
triaxial stresses with no effect of texture (dashed lines). Figures (c) and (d) present results for cases
with non-zero off-diagonal stress components (σ12 �= 0, thin solid line; σ13 �= 0, thick dashed line;
σ23 �= 0, thin dashed line). Figures (e) and (f) present results for a pure axial stress with a maximum
stress direction tilted from the anvils direction (thin solid lines). For comparison, the ideal case of
pure axial stress with a maximum stress direction aligned with the anvils’ direction is indicated in
all figures as thick solid lines.

and including effects of LPO (thin solid line) using the ODF measured on a sample of cobalt
compressed in a DAC at 42 GPa [22]. The lattice strains vary linearly with (1 − 3 cos2 βy) for
models that do not include effects of LPO [18]; models that include effects of LPO produce
slightly curved lines [20]. However, in the present case, the effects of LPO are particularly
small and both models can hardly be distinguished. In both cases, stresses can be inverted from
the diffraction data.

The dashed lines in figures 3(a) and (b) indicate results for a triaxial stress with the the
principal components of stress aligned with the axis of the sample coordinate system KS and
no effects of LPO (models 2 and 3 in table 1). As for the case of pure axial stress, the simulated
lattice strains vary linearly with (1 − 3 cos2 βy). However, stress inversions with σ11 and σ22

as free parameters will fail consistently. Stress inversion can be performed assuming pure axial
stress. For model 2 (thick dashed lines, σ11 < σ22), this leads to

σP = 39.8 GPa

σ11 = σ22 = −1.8 GPa,

σ33 = 3.6 GPa,

(12)
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that is an under-estimation of pressure and improper stresses. For model 3 (thin dashed lines,
σ11 > σ22), such an inversion would lead to

σP = 44.1 GPa

σ11 = σ22 = −1.2 GPa,

σ33 = 2.4 GPa,

(13)

which is an over-estimate of pressure and improper stresses. It should be noted that such a stress
configuration can be detected and evaluated by performing additional measurements with the
incoming x-ray beam parallel to XS or ZS.

The effects of the shear components of the stress tensor (models 4, 5, and 6 in table 1) are
highlighted in figures 3(c) and (d). σ12 �= 0 and σ23 �= 0 introduce lattice strains with a period
of 360◦ in δ. Maxima and minima of the corresponding lattice strains are located at δ = 90◦
and 270◦ for σ12 �= 0 and δ = 0◦ and 180◦ for σ23 �= 0. On the other hand, σ13 �= 0 introduces
lattice strains with a period of 180◦ in δ with maxima and minima located at δ = 45◦, 135◦,
225◦, and 315◦. In all cases, shear components of the stress tensor can be inverted from the
diffraction data. Because of the very different nature of the effect of each shear component of
the stress tensor on lattice strains, all components can be deduced independently, from a single
measurement.

Finally, figures 3(e) and (f) present the results obtained for model 7 in table 1. In this case,
the stress is supposed to be mainly axial, but the axis of symmetry of the stress tensor is tilted by
ασ = 30◦ βσ = 10◦, where β and α indicate rotations around YS and ZS, respectively. When
plotted as function of δ, the lattice strains resemble that of the pure axial case, with a slight
offset of the location of minima and maxima. When plotted as a function of (1 − 3 cos2 βy),
they deviate from the straight line that is expected with pure axial stress and form an ellipse. In
any case, such a stress can be inverted from the diffraction data (table 1).

3.3. Rotational anvil geometry

In this section, we investigate the effect of deviatoric stresses on x-ray diffraction patterns
in settings corresponding to rotational anvil experiments. These experiments are new and
have only recently been applied to high pressure deformation [2, 3, 49–51]. Deformation
experiments in this geometry are conducted by twisting a thin sample between the anvils, and
stresses are measured in situ using x-ray diffraction. However, stress measurement using x-
ray diffraction in rotational anvil deformation experiments is still very preliminary and the
technique has not yet been standardized. One of the difficulties in stress inversion is the
presence of an axial stress component superimposed on the shear stresses imposed by the
rotation of the anvils.

Here, we simulate x-ray measurements in three geometries (figure 4): (i) with the
incoming x-ray beam parallel to the axis of rotation, sampling a region where the sample is
deformed in shear perpendicular to the incoming x-ray beam; (ii) with the incoming x-ray
beam perpendicular to the axis of rotation, sampling a region where the sample is deformed
in shear perpendicular to the incoming x-ray beam; and (iii) with the incoming x-ray beam
perpendicular to the axis of rotation, sampling a region where the sample is deformed in
shear parallel to the incoming x-ray beam. In all cases, we assume that the diffraction
signal has been filtered and that the diffracting portion of the sample is under uniform stress.
Table 2 and figure 5 present the stress models considered and the corresponding lattice strains
εL

33 = (d − d0)/d0 for the 100 line of cobalt as a function of the azimuth angle on the detector
δ, respectively.

The simulated lattice strains for measurements in a perpendicular geometry with the
direction of shear perpendicular to the incoming x-ray beam are presented in figure 5(a). In this
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Figure 5. Simulation of measured lattice strains for the 100 line of a cobalt sample in a rotational
anvil experiment as a function of the azimuth angle on the detector δ for the geometries described
in figure 4: (a) presents the results obtained for an experiment in perpendicular geometry sampling
a region where the stress is purely axial (compression, no torsion applied, thin solid line), in simple
shear configuration, with the direction of shear perpendicular to the x-ray beam (no compression,
torsion applied, thin dashed line), and a combination of the two (compression and torsion applied,
thick solid line); (b) presents the results obtained for an experiment in perpendicular geometry
sampling a region where the stress is purely axial (compression, no torsion applied, thin solid line),
in simple shear configuration, with the direction of shear parallel to the x-ray beam (no compression,
torsion applied, thin dashed line), and a combination of the two (compression and tortion applied,
thick solid line); and, finally, (c) presents the results obtained for an experiment in parallel geometry
sampling a region where the stress is purely axial (compression, no torsion applied, thin solid
line), in simple shear configuration (no compression, torsion applied, thin dashed line), and with
a combination of the two (compression and torsion applied, thick solid line).

case, the results are very similar to those modelled for the opposed anvil geometry (figure 3).
Pure axial stress (thin solid line, model 1), pure shear stress (dashed line, model 2), or a
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Table 2. Measurement geometry, applied stress, inversion parameters, and success in stress
inversion for models of rotational anvil geometry. Stresses are expressed in GPa in the sample
coordinate system KS (figure 4).

Model Geometry Applied stress Inversion model Success

1 ⊥
[−1.5 · ·

· −1.5 ·
· · 3.0

] [−t/3 σ12 σ13

· −t/3 σ23

· · 2t/3

]
Yes

2 ⊥
[ · · 3

· · ·
3 · ·

] [−t/3 σ12 σ13

· −t/3 σ23

· · 2t/3

]
Yes

3 ⊥
[−1.5 · 3

· −1.5 ·
3 · 3

] [−t/3 σ12 σ13

· −t/3 σ23

· · 2t/3

]
Yes

4 ⊥
[ · · ·

· · 3
· 3 ·

] [−t/3 σ12 σ13

· −t/3 σ23

· · 2t/3

]
Yes

5 ⊥
[−1.5 · ·

· −1.5 3
· 3 3

] [−t/3 σ12 σ13
· −t/3 σ23

· · 2t/3

]
Yes

6 ‖
[−1.5 · ·

· −1.5 ·
· · 3

] [−t/3 σ12 σ13

· −t/3 σ23
· · 2t/3

]
No

7 ‖
[ · · 3

· · ·
3 · ·

] [−t/3 σ12 σ13

· −t/3 σ23

· · 2t/3

]
Yes

8 ‖
[−1.5 · 3

· −1.5 ·
3 · 3

] [−t/3 σ12 σ13

· −t/3 σ23

· · 2t/3

]
No

combination of the two (thick solid line, model 3) have a very different influence on lattice
strains, and all can be inverted from the diffraction data.

Simulations of measurements in a perpendicular geometry with the direction of shear
parallel to the incoming x-ray beam are presented in figure 5(b). Pure axial stress (thin solid
line, model 1) introduces lattice strains with a period of 180◦ in δ with maxima and minima
located at δ = 0◦, 90◦, 180◦, and 270◦. Pure shear stress (dashed line, model 4) induces lattice
strains with a period of 360◦ in δ with maxima and minima at δ = 0◦ and 180◦. A combination
of the two stress (thick solid line, model 5) results in the summation of lattice strains induced
by the pure axial stress and those induced by the shear component. Both have different periods
and can therefore be inverted from the diffraction data.

Finally, figure 5(c) presents the simulated lattice strains for measurements in a parallel
geometry. Pure axial stress (thin solid line, model 6) results in a shift in the apparent d-
spacing under equivalent hydrostatic pressure d0. In this case, the axial component of the stress
tensor cannot be evaluated from lattice strains only and pressure estimations based on unit cell
parameters will be biased. Pure shear stress (dashed line, model 7) results in lattice strains with
a period of 360◦ in δ with maxima and minima at δ = 90◦ and 270◦. It can be inverted from
the data. A combination of axial and pure shear stress (thick solid line, model 8) will result in
a shift in the apparent d-spacings under equivalent hydrostatic pressure d0 and lattice strains
with a period of 360◦ in δ. The shear component of the stress tensor could be inverted from the
data, assuming that the shift in apparent d-spacings under equivalent hydrostatic pressure d0 is
properly corrected. This could be done using methods relying on line-width analysis [52, 53],
for instance.
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4. Example of experimental data

This section will present an example of the applicability of the models described in tables 1
and 2 to actual experimental data. The data presented here have already been published and
discussed elsewhere [22]. They were collected at the BL13A beamline of the Photon Factory
(Tsukuba, Japan) with a monochromatic x-ray beam of wavelength 0.4258 Å on a 3000 ×3000
pixel Rigaku image plate with an online reader. Sample-to-detector distance, detector tilt, and
pixel size ratios were calibrated using an Ag standard. High pressure and sample deformation
was achieved using a DAC equipped with diamonds of 350 µm. To allow diffraction in a
direction orthogonal to the compression axis, the sample was confined in an x-ray transparent
composite gasket made with amorphous boron, Kapton sheet, and epoxy [54]. The sample
was a pure commercial powder of cobalt with a starting grain size of 1–2 µm and a ratio of
hexagonal and cubic polymorph of 70%. Pressures were increased up to 42.5 GPa over 24 h.

Figure 6 presents the measured d-spacings as a function of δ and (1 − 3 cos2 βy) for the
100, 002, and 101 lines of hcp-Co. As observed in previous radial diffraction experiments on
Pt [47], a comparison between figures 6 and 3 indicates that the stress is mostly axial, with a
slight tilt of the maximum stress direction. An inversion of stress model 7 in table 1 from this
data under the Reuss average provides the following parameters:

P = 42.7 ± 0.03 GPa,

t = 3.2 ± 0.0 GPa,

ασ = 40.1◦ ± 1.7◦,
βσ = −9.5◦ ± 0.2◦.

(14)

However, the recalculated d-spacings do not match the experimental data (thin solid lines in
figure 6). Indeed, the amplitude of the lattice strains is under-estimated for lines such as 100 or
002 and over-estimated for 101.

In fact, a polycrystalline sample subjected to plastic deformation can develop
heterogeneities from grain to grain, at grain boundaries, or within the grains themselves which
can be incompatible with the concept of lattice strain theories. In such cases, the assumption of
a single uniform macroscopic stress applied to all grains and lattice planes within the sample
can fail, and stresses deduced for various lattice planes might vary [10, 55–59]. In this case, the
lattice strain data can be inverted, assuming an (hkl)-dependent uniaxial stress component thkl .
Hence, we adjust the d-spacings under equivalent hydrostatic pressure d0(hkl) and effective
uniaxial stress component thkl independently for each lattice plane, assuming the offset values
of the maximum stress direction ασ and βσ found above. Using the elastic moduli measured
using inelastic x-ray scattering [30], one finds

P = 42.7 ± 0.0 GPa

t100 = 4.30 ± 0.03 GPa

t002 = 3.93 ± 0.04 GPa

t101 = 2.53 ± 0.03 GPa

(15)

and the recalculated d-spacings are in agreement with the experimental data (thick solid lines
in figure 6).

5. Discussion

The results obtained for the models in tables 1 and 2 and figures 3 and 5 demonstrate that
lattice strains measured using x-ray diffraction can be a powerful tool for stress evaluation in
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Figure 6. Measured d-spacings in radial diffraction geometry for the 100, 002 and 101 lines of a
sample of hcp-Co after plastic deformation in compression in a DAC up to 42 GPa as a function
of the azimuth angle on the detector δ (a), (c), (e) and (1 − 3 cos2 βy) (b), (d), (f), where βy is the
angle between the anvil axis and the diffracting plane normal. Symbols are experimental data, thin
solid lines are fits to the data assuming a uniform stress for all lattice planes, and thick solid lines
are fits to the data assuming (hkl)-dependent stress.

high pressure deformation experiments. Indeed, assuming that no error has been introduced in
the measurement itself and that full Debye–Scherrer rings are available, all components of the
deviatoric stress tensor can be refined using a single diffraction image, with the exception of
σ11 and σ22. Moreover, this limitation could be overcome by using complimentary lattice strain
analysis on measurements in a different direction or using techniques based on peak profile
refinements [52, 53].

Actual experimental data show that the assumption of a single uniform macroscopic stress
applied to all grains with the same orientation can fail, and that stresses deduced for various
lattice planes can vary [10, 22]. This limitation is known in the material science community,
and there are elasto-plastic [55, 59–61], finite-element [57, 62], or continuum mechanics [63]
models that can be used to assist data interpretation. Moreover, for most geologically relevant
materials such as silicates, the amplitude of the (hkl)-dependence of the measured stresses is
smaller than for hcp metals and can simply be included in the errors.

It should be noted, however, that even data that seem to be in agreement with the
predictions of the purely elastic models [18] can be affected by plasticity. For instance, the
data presented in figure 6 appear to be linear when plotted as a function of (1 − 3 cos2 χ),
where χ is the angle between the maximum stress direction and the diffracting plane normal.
The lattice strains Q(hkl) extracted from the data are also consistent with the elastic model [18]
when plotted as a function of

l2
3 = 3a2l2/[4c2(h2 + hk + k2) + 3a2l2]. (16)
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However, the effective single-crystal elastic moduli extracted from this data are very different
from those measured with other techniques [21, 22]. This implies that single-crystal elastic
moduli extracted from radial diffraction data should be treated with extreme caution.
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